The Power of Waste: Opportunities for Renewable Natural Gas in AZ

The Role of Renewable Natural Gas in a Low Carbon Future

Dr. Nathan Parker School of Sustainability Arizona State University April 30, 2019

Food & green waste

RNG sources = sources of fugitive methane

Emitting carbon as CO₂ instead of CH₄ reduces the climate impact by ~24 times over 100 years.

4% Oil & Gas Extraction

5% Industrial & Misc

Source: CARB (2017) Short Lived Climate Pollutant Reduction Strategy.

2013 methane emissions inventory for CA

Landfills 20%

Rice 3% ° Dairy Enteric 20% Dairy Manure 25% Non-Dairy Livestock 10%아 4% Wastewater (primarily enteric)

U.S. Greenhouse Gas Emissions in 2017

RNG compliments renewable electricity

Can serve difficult to electrify demands in transportation like the heavy duty sector.

Can provide low carbon peaking power from natural gas power plants.

Gross RNG Potential in U.S.A.

Source: NREL (2014) Renewable Hydrogen Potential from Biogas in the United States. NREL/TP-5400-60283.

Low Carbon Fuel Standard

- California and Oregon
- Sets average carbon intensity targets for transportation fuels sold in CA that decline over time.
- Life cycle basis
- Obligated parties need credits to cover deficits generated by sales of high CI fuels
- Credit market

This figure shows the percent reduction in the carbon intensity (Cl) of California's transportation fuel pool. The LCFS target is to achieve a 10% reduction by 2020 by setting a declining annual target, or compliance standard. The compliance standard was frozen at 1% reduction from 2013-2015 due to legal challenges, contributing to a build-up of banked credits as regulated parties bringing new alternative fuels to market continued to over-comply with the standard. The program will continue post 2020 at a to be determined stringency.

Click to download the Excel spreadsheet of this graph

Credit prices approaching \$200/ton CO₂

This chart tracks credit prices and transaction volumes over time. Monthly average credit prices reported by Argus Media and OPIS [used with permission] are shown along with CARB monthly average price.

Click to download the Excel spreadsheet of this graph.

RNG has low carbon intensities (CI)

Source: Yeh, Sonia, et al. "A review of low carbon fuel policies: Principles, program status and future directions." Energy Policy 97 (2016): 220-234.

A Very Negative CI Pathway

Variation in Dairy Carbon Intensities

Local factors are hugely important in the economics of RNG.

Average distance to a pipeline by county

RNG supply with no policy

RNG Potential (BCF/yr)

RNG supply with \$150 LCFS credit

2025 LCFS target

What is driving these outcomes?

- Economies of scale favor large sources in landfill gas and wastewater.
- Landfill gas is more expensive to clean up and has higher carbon intensity than other sources.
- Manure biogas is expensive due to scale of facilities and need to build digesters.

Funding

California Air Resources Board

Collaborators

Daniel Scheitrum, University of Arizona Rob Williams, California Biomass Collaborative, UC Davis Nazli Uludere Aragon, Arizona State University Jacob Bethel, Arizona State University

Questions/Comments ncparker@asu.edu

